
bbl: Boltzmann Bayes Learner for
High-Dimensional Inference with Discrete

Predictors in R

Jun Woo
University of Minnesota, Minneapolis

Jinhua Wang
University of Minnesota, Minneapolis

Abstract

Non-regression-based inferences, such as discriminant analysis, can account for the
effect of predictor distributions that may be significant in big data modeling. We de-
scribe bbl, an R package for Boltzmann Bayes learning, which enables a comprehensive
supervised learning of the association between a large number of categorical predictors
and multi-level response variables. Its basic underlying statistical model is a collection of
(fully visible) Boltzmann machines inferred for each distinct response level. The algorithm
reduces to the naive Bayes learner when interaction is ignored. We illustrate example use
cases for various scenarios, ranging from modeling of a relatively small set of factors with
heterogeneous levels to those with hundreds or more predictors with uniform levels such
as image or genomic data. We show how bbl explicitly quantifies the extra power provided
by interactions via higher predictive performance of the model. In comparison to deep
learning-based methods such as restricted Boltzmann machines, bbl-trained models can
be interpreted directly via their bias and interaction parameters.

Keywords: Supervised learning, Boltzmann machine, naive Bayes, discriminant analysis, R.

1. Introduction
Many supervised learning tasks involve modeling discrete response variables y using predictors
x that can occupy categorical factor levels (Hastie, Tibshirani, and Friedman 2009). Ideally,
it would be best to model the joint distribution P (x, y) via maximum likelihood,

Θ̂ = arg max
Θ

[ln P (x, y|Θ)] , (1)

to find parameters Θ. Regression-based methods use P (x, y) = P (y|x)P (x) ≈ P (y|x). Many
rigorous formal results known for regression coefficients facilitate interpretation of their sig-
nificance. An alternative is to use P (x, y) = P (x|y)P (y) and fit P (x|y). Since y is low-
dimensional, this approach could capture extra information not accessible from regression
when there are many covarying predictors. To make predictions for y using P (x|y), one uses
the Bayes’ formula. Examples include linear and quadratic discriminant analyses (Hastie et al.
2009, pp. 106-119) for continuous x. For discrete x, naive Bayes is the simplest approach,
where the covariance among x is ignored via

P (x|y) ≈
∏

i

P (xi|y) (2)

2 bbl: Boltzmann Bayes Learner in R

with x = (x1, · · · , xm).
In this paper, we focus on supervised learners taking into account the high-dimensional nature
of P (x|y) beyond the naive Bayes-level description given by Eq. (2). Namely, a suitable
parametrization is provided by the Boltzmann machine (Ackley, Hinton, and Sejnowski 1985),
which for the simple binary predictor xi = 0, 1,

P (x|y) = 1
Zy

exp

∑
i

h
(y)
i xi +

∑
i<j

J
(y)
ij xixj

 , (3)

where Zy is the normalization constant, or partition function. Equation (3) is the Gibbs
distribution for Ising-type models in statistical mechanics (Chandler 1987). The two sets
of parameters h

(y)
i and J

(y)
ij each represent single variable and two-point interaction effects,

respectively. When the latter vanishes, the model leads to the naive Bayes classifier. Although
exact inference of Eq. (3) from data is in general not possible, recent developments led to many
accurate and practically usable approximation schemes (Hyvärinen 2006; Morcos, Pagnani,
Lunt, Bertolino, Marks, Sander, Zecchina, Onuchic, Hwa, and Weigt 2011; Nguyen, Zecchina,
and Berg 2017; Nguyen and Wood 2016a,b), making its use in supervised learning a viable
alternative to regression methods. Two approximation methods available for use are pseudo-
likelihood inference (Besag 1975) and mean field theory (Chandler 1987; Nguyen et al. 2017).
A recently described package BoltzMM can fit the (‘fully visible’) Boltzmann machine given
by Eq. (3) to data using pseudo-likelihood inference (Jones, Nguyen, and Bagnall 2019b;
Jones, Bagnall, and Nguyen 2019a). In contrast, classifiers based on this class of models
remain largely unexplored. Supervised learners using statistical models of the type (3) usually
take the form of the restricted Boltzmann machines instead (Hinton 2012), where (visible)
predictors are augmented by hidden units and interactions are zero except between visible
and hidden units. The main drawback of such layered Boltzmann machine learners, as is
common in all deep learning algorithms, is the difficulty in interpreting trained models. In
contrast, with the fully visible architecture, J

(y)
ij in Eq. (3), if inferred with sufficient power

while avoiding overfitting, has direct interpretation of interaction between two variables.
We refer to such learning/prediction algorithms using a generalized version of Eq. (3) as
Boltzmann Bayes inference. An implementation specific to genomic single-nucleotide poly-
morphism (SNP) data (two response groups, e.g., case and control, and uniform three-level
predictors, i.e., allele counts of xi = 0, 1, 2) has been reported previously (Woo, Yu, Ku-
mar, Gold, and Reifman 2016). However, this C++ software was geared specifically toward
genome-wide association studies and is not suitable for use in more general settings. We
introduce an R package bbl (Boltzmann Bayes Learner), which uses both R and C++ for
usability and performance, allowing the user to train and test statistical models in a variety
of different usage settings.

2. Model and algorithm
For completeness and for reference to software features described in Section 3, we summarize
in this section key relevant formulas (Woo et al. 2016) used by bbl, generalized such that
predictors each can have varying number of factor levels.

Jun Woo, Jinhua Wang 3

2.1. Model description
The discrete response yk for an instance k takes factor values y among G ≥ 2 groups; e.g.,
y = case, control with G = 2; k = 1, · · · , n denotes sample (or configuration) index. We
also introduce weights wk, each of which is integral number of times each configuration was
observed in data, such that

∑
k wk = ns is the total sample size. If the data take the form

of one entry per observation, wk = 1 and n = ns. The use of frequency wk can lead to more
efficient learning when the number of predictors is relatively small. We use symbol y for a
particular factor value and generic response variables interchangeably.
The model attempts to connect response y to a set of predictors represented by x with elements
xi and the observed data for an instance k denoted by xk. We assume that predictor variables
take discrete factor levels, each with distinct effect on responses, e.g., xi = a, t, g, c for DNA
sequence data. The overall likelihood is

L =
∑

k

wk ln P (xk, yk) =
∑

y

∑
k∈Ky

wk ln P (xk, y) ≡
∑

y

Ly, (4)

where the second summation restricts k to the set Ky of all k values for which yk = y. The
inference is first performed for each group y separately, maximizing Ly given by

Ly =
∑

k∈Ky

wk

[
ln P (xk|y) + ln P (y)

]
=

∑
k∈Ky

wk ln P (xk|y) + ny ln py, (5)

where py ≡ P (y) is the marginal distribution of y and ny =
∑

k∈Ky
wk is the size of group y.

In the parametrization we adopt for the first term in Eq. (5), the group-specific predictor
distribution is written as

P (x|y) = 1
Zy

exp

∑
i

h
(y)
i (xi) +

∑
i<j

J
(y)
ij (xi, xj)

 . (6)

The number of parameters (d.f.) per group y in Θy = {h(y)
i (x), J

(y)
ij (x, x′)} is

d.f. =
∑

i

(Li − 1) +
∑
i<j

(Li − 1)(Lj − 1), (7)

where Li is the total number of levels in factor xi, which contributes one less parameters to
d.f. because one of the factors can be taken as reference with the rest measured against it.
Internally, bbl orders factors, assigns codes ai = 0, · · · , Li−1, and set h

(y)
i (ai) = J

(y)
ij (ai, aj) =

0 whenever ai = 0 or aj = 0. We refer to h
(y)
i (x) and J

(y)
ij (x, x′) as bias and interaction

parameters, respectively.
In the special case where predictor levels are binary (xi = 0, 1), one may use the spin variables
si = 2xi− 1 = ±1, as in the package BoltzMM (Jones et al. 2019a,b). Its distribution (Jones
et al. 2019a)

P (s) ∝ exp
(1

2s⊤ M s + b⊤s
)

(8)

is then related to Eq. (3) by

bi = hi

2 + 1
4

∑
j ̸=i

Jij , (9a)

Mij = 1
4Jij , (9b)

4 bbl: Boltzmann Bayes Learner in R

where parameter superscripts were omitted because response group is not present.

2.2. Pseudo-likelihood inference

One option for fitting Eq. (6) to data is pseudo-likelihood maximization (Besag 1975):

Ly − ny ln py =
∑

k∈Ky

wk ln P (xk|y) ≈
∑

k∈Ky

wk

∑
i

ln Pi(xk
i |y, xk

j\i) ≡
∑

i

Liy, (10)

where the effective univariate distribution is conditional to all other predictor values:

Pi(x|y, xj\i) = eh̄
(y)
i (x|xj\i)

Ziy(xj\i)
, (11)

Ziy(xj\i) =
∑

x

eh̄
(y)
i (x|xj\i) = 1 +

Li−1∑
a=1

eh̄
(y)
i (a|xj\i), (12)

and
h̄

(y)
i (x|xj\i) = h

(y)
i (x) +

∑
j ̸=i

J
(y)
ij (x, xj). (13)

Including L2 penalizers (λh, λ), Liy in Eq. (10) becomes

Liy =
∑

k∈Ky

wk

[
h̄

(y)
i (xk

i |xk
j\i)− ln Ziy(xk

j\i)
]
− λh

2
∑

x

h
(y)
i (x)2 − λ

2
∑

j,x,x′

J
(y)
ij (x, x′)2 (14)

with first derivatives
∂Liy/ny

∂h
(y)
i (x)

= f̂
(y)
i (x)− 1

ny

∑
k∈Ky

wkPi(x|y, xk
l\i)− λhh

(y)
i (x), (15a)

∂Liy/ny

∂J
(y)
ij (x, x′)

= f̂
(y)
ij (x, x′)− 1

ny

∑
k∈Ky

wk1(xk
j = x′)Pi(x|y, xk

l\i)− λJ
(y)
ij (x, x′)

, (15b)

where

f̂
(y)
i (x) = 1

ny

∑
k∈Ky

wk1(xk
i = x), (16a)

f̂
(y)
ij (x, x′) = 1

ny

∑
k∈Ky

wk1(xk
i = x)1(xk

j = x′) (16b)

are the first and second moments of predictor values and 1(x) is the indicator function.
In bbl, Eqs. (15) are solved in C++ functions using the quasi-Newton optimization function
gsl_multimin_fdfminimizer_vector_bfgs2 in GNU Scientific Library (https://www.gnu.
org/software/gsl). By default, λh = 0 and only interaction parameters are penalized. As
can be seen from the third equality of Eq. (10), the pseudo-likelihood inference decouples
into individual predictors, and the inference for each i in bbl is performed sequentially. The
resulting interaction parameters, however, do not satisfy the required symmetry,

Jij(x, x′) = Jji(x′, x). (17)

https://www.gnu.org/software/gsl
https://www.gnu.org/software/gsl

Jun Woo, Jinhua Wang 5

After pseudo-likelihood inference, therefore, the interaction parameters are symmetrized as
follows:

Jij(x, x′)← 1
2

[
Jij(x, x′) + Jji(x′, x)

]
. (18)

In bbl, the input data are filtered such that predictors with only one factor level (no variation
in observed data) are removed. Nevertheless, in cross-validation of the processed data, sub-
divisions into training and validation sets may lead to instances where factor levels observed
for a given predictor within xi in Eq. (15) are only a subset of those in the whole data. It is
thus possible that optimization based on Eqs. (15) is ill-defined when any of the predictors
are constant. In such cases, we augment the training data by an extra instance, in which
constant predictors take other factor levels.

2.3. Mean field inference

The other option for predictor distribution inference is mean field approximation. In data-
driven inference, the interaction parameters are approximated as (Nguyen et al. 2017)

Ĵ
(y)
ij (x, x′) = −

[
C(y)

]−1

ij
(x, x′), (19)

i.e., negative inverse of the covariance matrix,

C(y)
ij (x, x′) = f̂ij(x, x′)− f̂i(x)f̂j(x′). (20)

Equation (19) can be interpreted as treating discrete x as if it were multivariate normal:
Eq. (6) would then be the counterpart of the multivariate normal probability density function
with −J

(y)
ij (x, x′) corresponding to the precision matrix. In real data where n ∼ d.f. or less,

the matrix inversion is often ill-behaved. It is regularized by interpolation of C(y) between
non-interacting (naive Bayes) (ϵ = 0) and fully interacting limits (ϵ = 1):

C(y) ← C̄(y) = (1− ϵ)Tr C(y)

Tr I I + ϵC(y), (21)

where I is the identity matrix of the same dimension as C(y). The parameter ϵ serves as a
good handle for probing the relative importance of interaction effects.
The bias parameters are given in mean field by an analog of Eq. (13),

ĥ
(y)
i (x) = h̄

(y)
i (x)−

∑
j ̸=i

∑
x′

Ĵ
(y)
ij (x, x′)f̂ (y)

j (x′), (22)

and
h̄

(y)
i (x) = ln

[
f̂

(y)
i (x)/f̂

(y)
i (0)

]
, (23)

where f̂
(y)
i (0) is the frequency of (reference) factor xi for which the parameters are zero

(ai = 0). Equation (22) relates the effective bias for predictor xi (the first term on the right)
as the sum of univariate bias (left-hand side) and combined mean effects of interactions with
other variables (the second term on the right) (Chandler 1987). The effective bias is related
to frequency via Eq. (23) because

f̂
(y)
i (x) = eh̄

(y)
i (x)

Ziy
= f̂

(y)
i (0) eh̄

(y)
i (x) (24)

6 bbl: Boltzmann Bayes Learner in R

where the fact that h̄
(y)
i (0) = 0 was used in the second equality.

As in pseudo-likelihood maximization, mean field inference also may encounter non-varying
predictors during cross-validation. To apply the same inference scheme using Eqs. (20), (22)
and (23) to such cases, the single-variable frequency f̂

(y)
i (x) and covariance f̂

(y)
ij (x, x′) are

computed using data augmented by a prior count of 1 uniformly distributed among all Li

factor levels for each predictor.

2.4. Naive Bayes

When interaction is ignored (J (y)
ij = 0), the model can be solved analytically. From Eqs. (22)

and (23),
ĥ

(y)
i (x) = ln

[
f̂

(y)
i (x)/f̂

(y)
i (0)

]
(25)

and (Woo et al. 2016)

Ly − ny ln py =
∑

k∈Ky

wk ln P (xk|y) = ny

∑
i,x

f̂
(y)
i (x) ln f̂

(y)
i (x). (26)

The likelihood ratio statistic for each predictor, where the null hypothesis is h
(y)
i (x) = hi(x)

with hi(x) the “pooled” inference parameters (same values for all response groups), is then

qi = 2
∑

y

ny

∑
x

[
f̂

(y)
i (x) ln f̂

(y)
i (x)− f̂i(x) ln f̂i(x)

]
. (27)

The statistic qi ∼ χ2 with d.f. = (G − 1)(Li − 1). Another example of hypotheses that can
be tested is h

(y)
i (x) = h

(y)
i (A) for x ∈ XA, where XA is a subset A of predictor values (e.g.,

in Titanic model, the effects of Class are the same for 2nd and 3rd Class; see Sec. 3), for
which

qi = 2
∑

y

ny

∑
A

∑
x∈XA

[
f̂

(y)
i (x) ln f̂

(y)
i (x)− f̂

(y)
i (A) ln f̂

(y)
i (A)

]
(28)

with d.f. = G(Li−1−Ni), where Ni is the number of predictor levels with distinct parameter
values.

2.5. Classification

For prediction, we combine predictor distributions for all response groups via Bayes formula:

P (y|x) = P (x|y)py∑
y′ P (x|y′)py′

= 1
1 +

∑
y′ ̸=y P (x|y′)py′/P (x|y)py

= 1
1 + e−Fy(x) , (29)

where
Fy(x) = ln

[
P (x|y)py∑

y′ ̸=y P (x|y′)py′

]
. (30)

For binary response coded as y = 0, 1, Eq. (30) reduces to

F1(x) = ln P (x|y = 1)− ln P (x|y = 0) + ln(p1/p0)
= α +

∑
i

βi(xi) +
∑
i<j

γij(xi, xj), (31)

Jun Woo, Jinhua Wang 7

where

α = ln Z0p1
Z1p0

,

βi(x) = h
(1)
i (x)− h

(0)
i (x),

γij(x, x′) = J
(1)
ij (x, x′)− J

(0)
ij (x, x′). (32)

Therefore, if J
(y)
ij (x, x′) = 0 (naive Bayes), Eq. (29) takes the form of the logistic regression

formula. However, the actual naive Bayes parameter values differ from logistic regression fit.
No expression for P (y|x) simpler than Eq. (29) exists for data with more than two groups.
In pseudo-likelihood maximization inference, Zy can be approximated by

ln Zy = 1
ny

∑
k∈Ky

∑
i

ln
{∑

x

[
e

h
(y)
i (x)+

∑
j ̸=i

Jij(x,xk
j)/2

]}
, (33)

or with the same expression without the factor of 1/2 in the interaction term in the exponent
(default). This quantity can be conveniently computed during the optimization process. With
the mean field option, the following expression is used:

ln Zy = − ln f̂ (y)(0)− 1
2

∑
i ̸=j

∑
x,x′

Jij(x, x′)f̂i(x)f̂j(x′). (34)

For a test data set for which the actual group identity yk of data instances are known, the
accuracy may be defined as

s = 1
n

∑
k

1

[
ŷ(xk) = yk

]
, (35)

where
ŷ(x) = arg max

y
P (y|x). (36)

If response is binary, the accuracy defined by Eq. (35) is sensitive to marginal distributions of
the two groups via Eq. (31). The area under curve (AUC) of receiver operating characteristic
is a more robust performance measure independent of probability cutoff. In bbl, the accuracy
given by Eqs. (35) and (36) is used in general with the option to use AUC for binary response
using R package pROC (Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, and Müller 2011;
Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller, Siegert, and Doering 2019).

3. Software Usage and Tests

3.1. Logistic regression

To motivate the use of bbl and highlight differences, we first consider the use of logistic
regression using glm. We use the base R data Titanic as an example:

R> titanic <- as.data.frame(Titanic)
R> titanic

8 bbl: Boltzmann Bayes Learner in R

Class Sex Age Survived Freq
1 1st Male Child No 0
2 2nd Male Child No 0
3 3rd Male Child No 35
4 Crew Male Child No 0
5 1st Female Child No 0
6 2nd Female Child No 0
7 3rd Female Child No 17
8 Crew Female Child No 0
9 1st Male Adult No 118
10 2nd Male Adult No 154
11 3rd Male Adult No 387
12 Crew Male Adult No 670
13 1st Female Adult No 4
14 2nd Female Adult No 13
15 3rd Female Adult No 89
16 Crew Female Adult No 3
17 1st Male Child Yes 5
18 2nd Male Child Yes 11
19 3rd Male Child Yes 13
20 Crew Male Child Yes 0
21 1st Female Child Yes 1
22 2nd Female Child Yes 13
23 3rd Female Child Yes 14
24 Crew Female Child Yes 0
25 1st Male Adult Yes 57
26 2nd Male Adult Yes 14
27 3rd Male Adult Yes 75
28 Crew Male Adult Yes 192
29 1st Female Adult Yes 140
30 2nd Female Adult Yes 80
31 3rd Female Adult Yes 76
32 Crew Female Adult Yes 20

Although more detailed versions of the same data set are available [see, e.g., titanic (Hendricks
2015) or stablelearner (Philipp, Strobl, Zeileis, Rusch, and Hornik 2018b; Philipp, Rusch,
Hornik, and Strobl 2018a)], the simpler version above only including factor variables suffices
for our purposes because bbl requires discrete factors as predictors. Input data can either be
of the form above with unique combinations of predictors in each row along with frequency
(input to weights argument of glm) or raw data (one observation per row) we generate using
the utility function freq2raw:

R> library('bbl')
R> titanic_raw <- freq2raw(data = titanic, freq = Freq)
R> head(titanic_raw)

Class Sex Age Survived
1 3rd Male Child No

Jun Woo, Jinhua Wang 9

2 3rd Male Child No
3 3rd Male Child No
4 3rd Male Child No
5 3rd Male Child No
6 3rd Male Child No

R> summary(titanic_raw)

Class Sex Age Survived
1st :325 Male :1731 Child: 109 No :1490
2nd :285 Female: 470 Adult:2092 Yes: 711
3rd :706
Crew:885

We train a logistic regression model using glm:

R> gfit0 <- glm(Survived ~ Class + Sex + Age, family = binomial(),
+ data = titanic, weights = Freq)
R> coef(summary(gfit0))

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6853195 0.2729942 2.510381 1.206011e-02
Class2nd -1.0180950 0.1959975 -5.194428 2.053497e-07
Class3rd -1.7777622 0.1715665 -10.361940 3.693921e-25
ClassCrew -0.8576762 0.1573389 -5.451140 5.004800e-08
SexFemale 2.4200603 0.1404101 17.235662 1.434015e-66
AgeAdult -1.0615424 0.2440256 -4.350127 1.360589e-05

The fit above included linear terms only. It indicates that survival was strongly associated with
class status, sex (female heavily favored), and age. The model below includes all interactions:

R> gfit1 <- glm(Survived ~ (Class + Sex + Age)^2, family = binomial(),
+ data = titanic, weights = Freq)
R> coef(summary(gfit1))

Estimate Std. Error z value
(Intercept) 14.77919783 437.9677040 0.0337449490
Class2nd 0.26020943 549.2944350 0.0004737158
Class3rd -15.76959654 437.9678231 -0.0360062902
ClassCrew -0.52214898 0.1808848 -2.8866384473
SexFemale 3.59619056 0.7478095 4.8089662070
AgeAdult -15.50683119 437.9677334 -0.0354063325
Class2nd:SexFemale -0.06800887 0.6711978 -0.1013246346
Class3rd:SexFemale -2.79994787 0.5687464 -4.9230165411
ClassCrew:SexFemale -1.13607909 0.8204849 -1.3846434869
Class2nd:AgeAdult -1.93047135 549.2945246 -0.0035144558
Class3rd:AgeAdult 14.85629331 437.9678705 0.0339209662

10 bbl: Boltzmann Bayes Learner in R

SexFemale:AgeAdult 0.68679086 0.5254120 1.3071473287
Pr(>|z|)

(Intercept) 9.730805e-01
Class2nd 9.996220e-01
Class3rd 9.712773e-01
ClassCrew 3.893814e-03
SexFemale 1.517128e-06
AgeAdult 9.717557e-01
Class2nd:SexFemale 9.192928e-01
Class3rd:SexFemale 8.522025e-07
ClassCrew:SexFemale 1.661615e-01
Class2nd:AgeAdult 9.971959e-01
Class3rd:AgeAdult 9.729402e-01
SexFemale:AgeAdult 1.911627e-01

A comparison of the linear coefficients and significance levels in the two models suggest that
interaction plays important roles; in particular, marginal effects on the linear level remained
significant only for the Female status.
To illustrate training and prediction, we divide the sample into train and test sets:

R> set.seed(159)
R> nsample <- NROW(titanic_raw)
R> flag <- rep(TRUE, nsample)
R> flag[sample(nsample, nsample/2)] <- FALSE
R> dtrain <- titanic_raw[flag,]
R> dtest <- titanic_raw[!flag,]

We train a glm model with interactions and make prediction on the test data:

R> gfit2 <- glm(Survived ~ Class * Sex + Sex * Age, family = binomial(),
+ data = dtrain)
R> prl <- predict(gfit2, newdata = dtest)
R> yhat <- ifelse(prl > 0, 'Yes', 'No')
R> mean(yhat == dtest$Survived)

[1] 0.7718182

R> gauc <- pROC::roc(response = dtest$Survived, predictor = prl,
+ direction = '<')$auc
R> gauc

Area under the curve: 0.7699

In the above, the interaction Class:Age was omitted because it was rank-deficient (no Crew
among children) and prediction from a rank-deficient fit is ill-defined.
For comparison with bbl, which by default includes regularization, we also consider penalized
logistic regression fit using glmnet (Friedman, Hastie, and Tibshirani 2010; Friedman, Hastie,
Tibshirani, Narasimhan, Simon, and Qian 2019)

Jun Woo, Jinhua Wang 11

−7 −6 −5 −4 −3 −2

0.
65

0.
70

0.
75

Log(λ)

A
U

C

5 5 5 5 5 5 3 2 1 1 0

Figure 1: Cross-validation run of glmnet on Titanic data.

R> if(!require('glmnet'))
+ install.packages('glmnet')
R> library('glmnet')
R> xdat <- model.matrix(~ Class + Sex + Age, data = dtrain)[,-1]
R> y <- dtrain[, 4]
R> gnet <- cv.glmnet(x = xdat, y = y, family = 'binomial', alpha = 1,
+ nfolds = 5, type.measure = 'auc')
R> plot(gnet)

Note that the above fit used the non-interacting model of three predictors and L1 penalization
(α = 1). The input matrix contains integer-coded terms in the linear model (columns):

R> head(xdat)

Class2nd Class3rd ClassCrew SexFemale AgeAdult
4 0 1 0 0 0
5 0 1 0 0 0
7 0 1 0 0 0
8 0 1 0 0 0
13 0 1 0 0 0
14 0 1 0 0 0

Figure 1 indicates that the effect of regularization is minimal for this model.

12 bbl: Boltzmann Bayes Learner in R

3.2. Boltzmann Bayes learning

The logistic regression shown in Section 3.1 allowed for inference and significance testing of
linear and interaction coefficients in association with the response variable. However, the
regression fit did not provide any further information regarding the source of association: in
the examples in Section 3.1, the survival of Titanic passengers was seen to be associated with
being Female and not being Crew members. The corresponding linear regression coefficients,
which have the same functional form as in Eq. (31) [βi(x) in Eq. (32) if interactions are
neglected], are measures of the difference in coefficients h

(y)
i between the two response groups

[Eq. (32)]. The two terms, h
(1)
i and h

(0)
i , whose difference yielded the coefficient βi(x) remained

unknown. How were the sub-groups distributed among survivor and non-survivor groups?
Were there very few Female 3rd-class passengers among the survivor group compared to
non-survivor, or were they found in both groups but more so among non-survivors?
The bbl inference estimates the individual distributions of predictors in response groups sep-
arately and subsequently combines them to make predictions. For binary response, this
inference provides estimates of the two coefficients [h(1)

i , h
(0)
i for linear effects and J

(1)
ij , J

(0)
ij

for interactions] in Eq. (31) whose difference corresponds to the logistic regression coeffi-
cients. More generally, the availability of the direct estimates of predictor distributions in
each response group given by Eq. (6) facilitates model interpretations in a way not possible
for regression-based models, as we show below in this section and Section 3.5.
With this comparison in mind, we use the same Titanic data below to illustrate the Boltzmann
Bayes inference. As in glm, bbl uses formula input to train an S3 object of class bbl:

R> bfit0 <- bbl(Survived ~ Class + Sex + Age, data = titanic, weights = Freq,
+ prior.count = 0)

which by default triggers a pair of pseudo-likelihood inferences, solving the maximum pseudo-
likelihood equations (15) first under the alternative hypothesis (individual groups have distinct
distributions) and then the null hypothesis (all samples have the same distribution).
The argument prior.count can be used to add prior counts to frequencies of occurrence of
each predictor level. One may observe that when interaction is neglected, the naive Bayes
model involves categorical distributions for each predictor. In this special case, therefore, the
prior count can be regarded as the hyperparameter of the conjugate Dirichlet prior, making
the overall treatment of the model a fully Bayesian extension.
The print method on bbl shows the structure of model and (subsets) of inferred parameters:

R> bfit0

Call:
bbl(formula = Survived ~ Class + Sex + Age, data = titanic, weights = Freq,

prior.count = 0)
3 predictor states:

Class = 1st 2nd 3rd Crew
Sex = Female Male
Age = Adult Child

Responses:

Jun Woo, Jinhua Wang 13

Survived = No Yes

Coefficients:
dh_[Class]^(No):

2nd 3rd Crew
0.4453027 0.6893738 0.7062034

dh_[Class]^(Yes):
2nd 3rd Crew

-0.4114330 -0.9075005 -0.9584320

dh_[Sex]^(No):
Male

1.07819

dh_[Sex]^(Yes):
Male

-1.239013

dh_[Age]^(No):
Child

-0.3647851

dh_[Age]^(Yes):
Child

0.5148763

where dh represents parameters ∆h
(y)
i = h

(y)
i − hi; i.e., individual group parameters offset by

the pooled values. Internally, the parameters h
(y)
i and J

(y)
ij are stored as lists with argument

order (y, i) and (y, i, j), respectively. The inner-most elements of the lists are vectors and
matrices of dimension Li − 1 = c(3,1,1) and (Li − 1, Lj − 1), respectively. The summary
method on bbl object prints out parameters and their significance test outcomes under the
naive Bayes approximation (no interactions) as a rough overview of model under consideration:

R> summary(bfit0)

Call:
bbl(formula = Survived ~ Class + Sex + Age, data = titanic, weights = Freq,

prior.count = 0)
3 predictor states:

Class = 1st 2nd 3rd Crew
Sex = Female Male
Age = Adult Child

Responses:
Survived = No Yes

Fit method: mf

14 bbl: Boltzmann Bayes Learner in R

naive Bayes coefficients:
h_Class:

2nd 3rd Crew
No 0.3139728 1.4650752 1.7077243
Yes -0.5425214 -0.1314224 0.0433803
pooled -0.1313360 0.7757901 1.0017625
chisq = 180.9014, df = 3, Pr(>chisq) = 5.633919e-39

h_Sex:
Male

No 2.38189493
Yes 0.06472019
pooled 1.30372186
chisq = 434.4688, df = 1, Pr(>chisq) = 1.730842e-96

h_Age:
Child

No -3.319765
Yes -2.440056
pooled -2.954528
chisq = 19.5606, df = 1, Pr(>chisq) = 9.745843e-06

The test results are those from likelihood ratio test applied to the naive Bayes result, Eq. (27),
with the null hypothesis h

(y)
i (a) = hi(a). The tables of bias parameters shown above include

those for two survival status groups. Their signs and magnitudes, along with the computed
significance levels, clearly indicate the associations of lower Class status and being Male
with non-survivors. There are few children among both survivors and non-survivors; hence
highly negative bias parameters in all groups, although less so in survivor group, as expected.
We note that the summary method displays naive Bayes results, for which simple analytic
expressions for test results are available, even for models containing interactions.
One may compare the naive Bayes parameter βi(x) with the logistic regression coefficients:

R> cb0 <- coef(bfit0)
R> beta <- list(Class = cb0hYes$Class - cb0$hNoClass,
+ Sex = cb0hYes$Sex - cb0$hNoSex, Age = cb0hYes$Age - cb0$hNoAge)
R> unlist(beta)

Class.2nd Class.3rd Class.Crew Sex.Male Age.Child
-0.8567357 -1.5968743 -1.6646354 -2.3172031 0.8796614

R> coef(summary(gfit0))[,'Estimate']

(Intercept) Class2nd Class3rd ClassCrew SexFemale
0.6853195 -1.0180950 -1.7777622 -0.8576762 2.4200603
AgeAdult

-1.0615424

Jun Woo, Jinhua Wang 15

and observe that they are largely consistent (with different signs depending on which factor
level was used as reference) but not identical.
We now fit an interacting model using bbl:

R> bfit <- bbl(Survived ~ Class * Sex + Sex * Age, data = titanic,
+ weights = Freq)
R> bfit

Call:
bbl(formula = Survived ~ Class * Sex + Sex * Age, data = titanic,

weights = Freq)
3 predictor states:

Class = 1st 2nd 3rd Crew
Sex = Female Male
Age = Adult Child

Responses:
Survived = No Yes

Coefficients:
dh_[Class]^(No):

2nd 3rd Crew
1.506746 2.993541 1.569273

dh_[Class]^(Yes):
2nd 3rd Crew

-0.1028470 -0.7492758 -0.1122300

dh_[Sex]^(No):
Male

3.168334

dh_[Sex]^(Yes):
Male

-1.074811

dh_[Age]^(No):
Child

0.3879267

dh_[Age]^(Yes):
Child

-0.175671

dJ_[Class,Sex]^(No):
Male

2nd -1.247307

16 bbl: Boltzmann Bayes Learner in R

3rd -2.740353
Crew -1.399824

dJ_[Class,Sex]^(Yes):
Male

2nd -0.90438653
3rd -0.01714753
Crew -0.30732860

dJ_[Sex,Age]^(No):
Child

Male -0.4924723

dJ_[Sex,Age]^(Yes):
Child

Male 1.165608

R> plot(bfit)

The parameters printed include those for interactions. The plot method shows a barplot
of bias parameters and a heatmap of interaction parameters (Fig. 2). Note that Male mem-
bers were predominant (bias parameters; top), while Male 3rd-class passengers were under-
represented (interactions; bottom left), among non-survivors. In addition, Male-Child class
had enhanced survival (bottom right).
We now fit the training data and make prediction on test data:

R> bfit2 <- bbl(Survived ~ Class * Sex + Sex * Age, data = dtrain)
R> pr <- predict(bfit2, newdata = dtest, type = 'prob')
R> head(pr)

No Yes yhat
1 0.8092695 0.1907305 No
2 0.8092695 0.1907305 No
3 0.8092695 0.1907305 No
4 0.8092695 0.1907305 No
5 0.8092695 0.1907305 No
6 0.8092695 0.1907305 No

R> auc <- pROC::roc(response = dtest$Survived, predictor = pr[, 2],
+ direction = '<')$auc
R> auc

Area under the curve: 0.7707

Here, Eq. (29) was used with x from the supplied newdata. The predict method returns a
data frame containing predicted group probabilities and the most likely group for each row.

Jun Woo, Jinhua Wang 17

∆h

−1

0

1

2

3

C
la

ss
:2

nd

C
la

ss
:3

rd

C
la

ss
:C

re
w

S
ex

:M
al

e

A
ge

:C
hi

ld

Survived

No
Yes

C
la

ss
:2

nd

C
la

ss
:3

rd

C
la

ss
:C

re
w

S
ex

:M
al

e

A
ge

:C
hi

ld

Class:2nd

Class:3rd

Class:Crew

Sex:Male

Age:Child

∆J (Survived=No)

C
la

ss
:2

nd

C
la

ss
:3

rd

C
la

ss
:C

re
w

S
ex

:M
al

e

A
ge

:C
hi

ld

Class:2nd

Class:3rd

Class:Crew

Sex:Male

Age:Child

∆J (Survived=Yes)

2.7

−2.7

Figure 2: Plot of bbl object displays bias (top) and interaction parameters (bottom). All parameters
are offset by their pooled (singe-group) values.

One can do cross-validation applied to dtrain data, dividing it into nfold = 5 train/validation
subsets of 4:1 proportion, and aggregating predictions for validation sets using the trained
model:

R> cv <- crossVal(Survived ~ .^2, data = dtrain, method = 'pseudo',
+ lambda = 10^seq(-5, -2, 0.2), verbose = 0)
R> cv

Optimal lambda = 0.0002511886
Max. score: 0.7369487

lambda AUC ci1 ci2
1 1.000000e-05 0.7184460 0.6861087 0.7507834
2 1.584893e-05 0.7162328 0.6838517 0.7486139
3 2.511886e-05 0.7275954 0.6955664 0.7596244
4 3.981072e-05 0.7289819 0.6965950 0.7613689
5 6.309573e-05 0.7280662 0.6956884 0.7604440

18 bbl: Boltzmann Bayes Learner in R

1e−05 1e−04 1e−03 1e−02

0.65

0.70

0.75

λ

A
U

C

Figure 3: Cross-validation run of Titanic data in bbl.

6 1.000000e-04 0.7303795 0.6986485 0.7621106
7 1.584893e-04 0.7257752 0.6932851 0.7582653
8 2.511886e-04 0.7369487 0.7049321 0.7689653
9 3.981072e-04 0.7271394 0.6946901 0.7595888
10 6.309573e-04 0.7279105 0.6955033 0.7603178
11 1.000000e-03 0.7336048 0.7017480 0.7654616
12 1.584893e-03 0.7169557 0.6839247 0.7499867
13 2.511886e-03 0.7153134 0.6821272 0.7484996
14 3.981072e-03 0.7227723 0.6905092 0.7550355
15 6.309573e-03 0.6734404 0.6387032 0.7081776
16 1.000000e-02 0.6509709 0.6135566 0.6883852

R> plot(cv, mar=c(4, 4, 3, 3), tck = -0.04, bty = 'n')

Here, the model included all interaction terms and returned an object with a data.frame of
AUCs for multiple lambda values as well as 95% confidence intervals and optimal values with
maximum AUC. We use this information to make prediction as follows:

R> model <- bbl(Survived ~ .^2, data = dtrain, lambda = cv$regstar)
R> pr2 <- predict(model, newdata = dtest)
R> bscore <- mean(dtest$Survived == pr2$yhat)
R> bscore

[1] 0.7981818

Jun Woo, Jinhua Wang 19

R> bauc <- pROC::roc(response = dtest$Survived, predictor = pr2[,2],
+ direction = '<')$auc
R> bauc

Area under the curve: 0.7711

Alternatively, predict(cv, ...) will apply the optimal model within cross-validation to
test data. The difference compared to the re-training step above is that the optimal model
stored in cv was trained on 4/5 of the sample, while model above used the whole training set.
A major advantage of the bbl fit compared to regression is the availability of predictor dis-
tributions in each response group, P (x|y), given by Eq. (6). In addition to using the model
to make predictions of response groups, one can also examine the predictor distributions and
identify configurations dominant in each response group. Since the total number of config-
urations x grows exponentially with the number of predictors, Markov chain Monte Carlo
(MCMC) sampling is necessary for exploration of these distributions except for very low di-
mensions. The function mcSample performs Gibbs sampling of the predictor distributions
using bbl parameters and outputs the most likely configuration in each response group:

R> map <- mcSample(bfit, nstep = 1000, progress.bar = FALSE)
R> map

$xmax
No Yes

Class "3rd" "1st"
Sex "Male" "Female"
Age "Adult" "Adult"

$emax
No Yes

3.394166 0.000000

The return value is a list containing the predictor configurations with the highest probability
in each response group (columns in map$xmax above) and the corresponding “energy” values,
which are exponents of Eq. (6).

3.3. Simulated data

We next use simulated data to show the effect of penalizers on bbl inference as well as its
usefulness under varying sample sizes.

R> predictors <- list()
R> m <- 5
R> L <- 3
R> for(i in 1:m) predictors[[i]] <- seq(0, L-1)
R> par <- randompar(predictors)
R> names(par)

20 bbl: Boltzmann Bayes Learner in R

[1] "h" "J"

The utility function randompar generates random parameters for predictors. We have set the
total number of predictors as m = 5, each taking values 0, 1, 2 (Li = L = 3).

R> xi <- sample_xi(nsample = 10000, predictors = predictors, h = par$h,
+ J = par$J, code_out = TRUE)
R> head(xi)

1 1 1 0 1 2
2 1 1 0 0 0
3 1 1 0 1 1
4 0 1 2 0 1
5 2 0 0 0 0
6 1 1 0 1 0

The function sample_xi will list all possible predictor states and sample configurations based
on the distribution (6). The total number of states here is Lm = 35, which is amenable for
exhaustive enumeration. However, this is possible only for small m and L. If either are even
moderately larger, sample_xi will hang.
Because there is only one response group, we call the main engine mlestimate of bbl inference
directly instead of bbl:

R> fit <- mlestimate(xi = xi, method = 'pseudo', lambda = 0)

Predictor 1: 25 iterations, likelihood = 0.796681
Predictor 2: 27 iterations, likelihood = 1.03982
Predictor 3: 23 iterations, likelihood = 0.946923
Predictor 4: 22 iterations, likelihood = 0.827505
Predictor 5: 25 iterations, likelihood = 1.01009

In contrast to bbl function, which fits a model of multiple response groups and predictors
in factors, mlestimate is for a single group and requires input matrix xi whose elements
are integral codes of factors: ai = 0, · · · , Li − 1. Figure 4 compares the true and inferred
parameters. Here, the sample size was large enough that no regularization was necessary.
We next simulate a full binary response data set with four-level predictors:

R> nt <- c('a', 'c', 'g', 't')
R> set.seed(135)
R> for(i in 1:m) predictors[[i]] <- nt
R> names(predictors) <- paste0('v', 1:m)
R> par <- list()
R> par[[1]] <- randompar(predictors)
R> par[[2]] <- randompar(predictors, h0 = 0.1, J0 = 0.1)
R> dat <- randomsamp(predictors, response = c('ctrl', 'case'), par = par,
+ nsample = 1000)

Jun Woo, Jinhua Wang 21

True

In
fe

rr
ed

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

h
J

Figure 4: Comparison of true parameters and those inferred from pseudo-likelihood Boltzmann
Bayes inference. See the text for conditions.

The function randomsamp generates random samples of predictor-response pairs using the
supplied par. We perform a cross-validation using mean field inference,

R> cv <- crossVal(y ~ .^2, data = dat, method = 'mf', eps = seq(0, 1, 0.1),
+ verbose=0)
R> cv

Optimal epsilon = 0.7
Max. score: 0.8845219

epsilon AUC ci1 ci2
1 0.0 0.7849546 0.7568076 0.8131017
2 0.1 0.8392593 0.8149947 0.8635240
3 0.2 0.8610941 0.8386831 0.8835051
4 0.3 0.8708767 0.8493991 0.8923543
5 0.4 0.8773411 0.8565066 0.8981756
6 0.5 0.8812357 0.8608067 0.9016647
7 0.6 0.8831850 0.8629906 0.9033795
8 0.7 0.8845219 0.8644845 0.9045594
9 0.8 0.8840456 0.8639740 0.9041172
10 0.9 0.8815880 0.8612527 0.9019232
11 1.0 0.8724978 0.8511909 0.8938047

Here, bbl is called inside crossVal as before but with method = ‘mf’, which triggers mean
field inference with Eqs. (19) and (22).

22 bbl: Boltzmann Bayes Learner in R

0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

ε

A
U

C

a

True

In
fe

rr
ed

−1.5 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

h
J

b ε = 0.2

True

In
fe

rr
ed

−1.5 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

c ε = 0.7

True

In
fe

rr
ed

−1.5 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

d ε = 1

Figure 5: Regularized mean field inference using simulated data. (a) Cross-validation AUC with
respect to regularization parameter ϵ. (b-d) Comparison of true and inferred parameters under three
ϵ values. Best fit is achieved when AUC is maximum.

As shown in Fig. 5a, prediction AUC is optimized near ϵ = 0.7. The difference between AUC
at ϵ = 0 (naive Bayes limit) and the maximum is a measure of the overall effect of interaction.
We select three values of ϵ and examine the fit:

R> fit <- list()
R> eps <- c(0.2, 0.7, 1.0)
R> for(i in seq_along(eps))
+ fit[[i]] <- bbl(y ~ .^2, data = dat, method = 'mf', eps = eps[i],
+ verbose = 0)

Figure 5b-d compares the three inferred parameter sets (coef(fit[[i]])$h, coef(fit[[i]])$J)
with the true values (par[[iy]]$h, par[[iy]]$J). As ϵ increases from 0 to 1, interaction
parameter J grows from zero to large, usually overfit levels. We verify that the bias and vari-
ance strike the best balance under ϵ = 0.7 (Fig. 5c), as suggested by cross-validation AUC in
Fig. 5a.

3.4. Genetic code

We consider a different learning task example with a much larger space of response groups,

Jun Woo, Jinhua Wang 23

namely those of amino acids; K = 21, which include 20 amino acids plus stop signal (‘*’),
encoded by DNA sequences (xi = a, c, g, t). In DNA sequences, three nucleotides combine to
encode specific amino acids. We will train a model attempting to re-discover the mapping
from nucleotide sequences to amino acids.

R> set.seed(351)
R> n <- 2000
R> dat <- data.frame(b1 = sample(nt, size = n, replace = TRUE),
+ b2 = sample(nt, size = n, replace = TRUE),
+ b3 = sample(nt, size = n, replace = TRUE))
R> head(dat)

b1 b2 b3
1 t a g
2 g t c
3 t a a
4 c g g
5 a a c
6 c t g

In the above, we generated random instances of triplet codons for training. We use the package
Biostrings (Pagès, Aboyoun, Gentleman, and DebRoy 2019) to translate it into amino acids:

R> if(!require('Biostrings')){
+ if(!require('BiocManager'))
+ install.packages('BiocManager')
+ BiocManager::install('Biostrings')
+ }
R> aa <- Biostrings::DNAString(paste(t(dat), collapse = ''))
R> aa

6000-letter DNAString object
seq: TAGGTCTAACGGAACCTGGCGATTATACTTG...AGTAAACTCGACAGTGACCGAAGGTACGGGC

R> aa <- strsplit(as.character(Biostrings::translate(aa)), split = '')[[1]]
R> xdat <- cbind(data.frame(aa = aa), dat)
R> head(xdat)

aa b1 b2 b3
1 * t a g
2 V g t c
3 * t a a
4 R c g g
5 N a a c
6 L c t g

We now cross-validate using bbl:

24 bbl: Boltzmann Bayes Learner in R

R> cv <- crossVal(aa ~ .^2, data = xdat, lambda = 10^seq(-3, 1, 0.5),
+ verbose = 0)
R> cv

Optimal lambda = 0.3162278
Max. score: 1

lambda score
1 0.001000000 0.9195
2 0.003162278 0.9195
3 0.010000000 0.9875
4 0.031622777 0.9875
5 0.100000000 0.9925
6 0.316227766 1.0000
7 1.000000000 0.9930
8 3.162277660 0.9770
9 10.000000000 0.9770

Note that with the multinomial response group, the accuracy defined by Eq. (35) is used. The
class cv.bbl extends bbl and stores the model with the optimal λ. In contrast to Section 3.2,
we do not refit the model under this λ because accuracy is maximum. Testing can use all
possible codon sequences (43 = 64 total):

R> panel <- expand.grid(b1 = nt, b2 = nt, b3 = nt)
R> head(panel)

b1 b2 b3
1 a a a
2 c a a
3 g a a
4 t a a
5 a c a
6 c c a

R> dim(panel)

[1] 64 3

R> p <- predict(cv, panel)
R> ap <- Biostrings::DNAString(paste(t(panel), collapse = ''))
R> ap <- strsplit(as.character(Biostrings::translate(ap)), split = '')[[1]]
R> accuracy <- mean(ap == p$yhat)
R> accuracy

[1] 1

Jun Woo, Jinhua Wang 25

● ● ● ● ●
●

●
● ●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

ε

S
co

re

10−4 10−3 10−2 10−1 1

Figure 6: Cross-validation of Boltzmann Bayes inference on MNIST data using mean field option.

The trained model has perfect accuracy of 1 and will not make mistakes in any translation of
DNA sequences.

3.5. Image data

We next consider learning examples with data sets containing predictors numbering ∼ 100
or more. The MNIST data set (http://yann.lecun.com/exdb/mnist/), widely used for
benchmarking classification algorithms (Lecun, Bottou, Bengio, and Haffner 1998), contains
image data of grayscale levels (xi = [0, 255]) derived from hand-written digits (yk = 0, · · · , 9)
for m = 28× 28 = 784 pixels. We use down-sampled training (n = 1,000) and test (n = 500)
data sets, where grayscale has been transformed into binary predictors (xi = 0, 1):

R> dat0 <- read.csv(system.file('extdata/mnist_train.csv', package = 'bbl'))
R> dat <- removeConst(dat0)
R> dat[1:5, 1:10]

y X40 X41 X45 X46 X47 X64 X65 X66 X67
1 9 0 0 0 0 0 0 0 0 0
2 7 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0
4 8 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0 0 0 0

R> cv <- crossVal(y ~ .^2, data = dat, method = 'mf', eps = 0.05)

Note that before calling crossVal, we removed predictors without factor variations (pixels
that are always empty) using the utility function removeConst. By default, error will occur
inside crossVal otherwise.

http://yann.lecun.com/exdb/mnist/

26 bbl: Boltzmann Bayes Learner in R

Algorithm Method Error rate (%) Reference/package
Linear classifier 1-layer NN 12.0 Lecun et al. (1998)
K-nearest neighbors Euclidean (L2) 5.0 Lecun et al. (1998)
2-layer NN 300 hidden units 4.7 Lecun et al. (1998)
RBM 2-layer 0.95 Salakhutdinov and Hinton (2009)
Naive Bayes Mean field (ϵ = 0) 15.7 bbl
BB Mean field (ϵ = 0.05) 8.5 bbl

Table 1: Performance comparison of BB inference and other models on MNIST data set. The bbl
inferences used the full MNIST training and test data sets (see text). BB, Boltzmann Bayes; NN,
neural network; RBM, restricted Boltzmann machine.

The above run will take a few minutes and yield a prediction score of 0.89. By feeding a
vector of ϵ values, one can obtain the profile shown in Fig. 6. The jump in performance under
ϵ∗ ∼ 0.05 over ϵ→ 0 (naive Bayes) limit gives a measure of interaction effects. The relatively
small value of ϵ∗ at the optimal condition, compared to e.g., Fig. 5a, reflects the sparseness
of image data.
We now retrain the model without cross-validation under ϵ∗ and classify test set images:

R> mnist <- bbl(y ~ .^2, data = dat, method = 'mf', eps = 0.05)
R> dtest <- read.csv(system.file('extdata/mnist_test.csv', package = 'bbl'))
R> dtest <- dtest[, colnames(dtest) %in% colnames(dat)]
R> pr <- predict(mnist, newdata = dtest[, -1], progress.bar = TRUE)
R> accuracy <- mean(pr$yhat == dtest$y)

R> accuracy

[1] 0.916

The test data must have the same set of predictors as those in mnist. Note the increase in
accuracy compared to cross-validation value because of the use of full training data.
We performed similar cross-validation and test analyses of the full MNIST data (training
n = 60,000 and test n = 10,000) and obtained the accuracy of 0.915 (classification error rate
8.5%), which compares favorably with other large-scale neural network algorithms (Table 1).
As with Titanic data, we leverage the unique advantage of bbl fit of providing predictor
distributions and estimate dominant configurations of each response group (Fig. 7):

R> mnist_map <- mcSample(mnist, nstep = 20, progress.bar = TRUE)
R> oldpar <- par(mfrow = c(2, 5), mar = c(1, 1, 1, 1))
R> xvar <- colnames(dat0[, -1])
R> xmap <- apply(mnist_map$xmax, 1:2, as.numeric)
R> xf <- matrix(0, nrow = length(xvar), ncol = 10)
R> rownames(xf) <- xvar
R> for(i in 1:10) xf[rownames(xmap), i] <- xmap[, i]
R> for(i in 1:10){
+ mat <- matrix(t(xf[, i]), nrow = 28, ncol = 28)

Jun Woo, Jinhua Wang 27

Figure 7: Maximum probability configurations of digits (0, · · · , 9) estimated from bbl fit coefficients
using Gibbs sampling.

+ image(x = 1:28, y = 1:28, z = mat[, 28:1], col = c('white', 'black'),
+ xaxt = 'n', yaxt = 'n', xlab = '', ylab = '')
+ }
R> par(oldpar)

It is interesting to note that the model for handwritten digit “1” is a combination of two
versions, one slated forward and the other backward. The images shown in Fig. 7 illustrate
examples of model interpretation made possible by the Bayesian formulation used by bbl, a
significant advantage compared to regression-based methods and other deep learning models
whose interpretations are challenging (Montavon, Samek, and Müller 2018).

3.6. Transcription factor binding site data

One of machine learning tasks of considerable interest in biomedical applications is the detec-
tion of transcription factor binding sites within genomic sequences (Wasserman and Sandelin
2004). Transcription factors are proteins that bind to specific DNA sequence segments
and regulate gene expression programs. Public databases, such as JASPAR (Khan, Fornes,
Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chéneby, Kulkarni, Tan, Barana-
sic, Arenillas, Sandelin, Vandepoele, Lenhard, Ballester, Wasserman, Parcy, and Mathelier
2018), host known transcription factors and their binding sequence motifs. Supervised learn-
ers allow users to leverage these data sets and search for binding motifs among candidate
sequences.
Here, we illustrate such an inference using an example set (MA0014.3) of binding motif
sequences from JASPAR (http://jaspar.genereg.net):

R> seq <- readFasta(system.file('extdata/MA0014.3.fasta', package = 'bbl'))
R> head(seq)

1 2 3 4 5 6 7 8 9 10 11 12
1 G G G C G T G A C T T C
2 C A G C G T G A C G C G

http://jaspar.genereg.net

28 bbl: Boltzmann Bayes Learner in R

1e−04 1e−02 1e+00

0.80

0.82

0.84

0.86

λ

A
U

C
a

0.0 0.2 0.4 0.6 0.8

0.78

0.80

0.82

0.84

0.86

ε
A

U
C

b

Figure 8: Cross-validation of transcription factor binding motif model using bbl with control sequences
generated by 3 nucleotide mutations. Data set is from Khan et al. (2018) (sample ID MA0014.3; see
text). (a) Pseudo-likelihood and (b) mean field inferences.

3 G C G C G T C A C G C T
4 C A G C T T G A C C A G
5 G A C C G T G A C C A C
6 A G G C G C G A C G C C

R> dim(seq)

[1] 948 12

The data set consists of common nucleotide segments from n = 948 raw sequences used for
motif discovery. We simulate a training set by generating non-binding sequences with random
mutation of 3 nucleotides:

R> set.seed(561)
R> nsample <- NROW(seq)
R> m <- NCOL(seq)
R> nt <- c('A', 'C', 'G', 'T')
R> ctrl <- as.matrix(seq)
R> for(k in seq_len(nsample))
+ ctrl[k, sample(m, 3)] <- sample(nt, 3, replace = TRUE)
R> colnames(ctrl) <- 1:m
R> data <- rbind(data.frame(y = rep('Binding', nsample), seq),
+ data.frame(y = rep('Non-binding', nsample), ctrl))
R> data <- data[sample(NROW(data)),]

We assess the performance of pseudo-likelihood and mean field inferences below using cross-
validation:

Jun Woo, Jinhua Wang 29

R> ps <- crossVal(y ~ .^2, data = data, method = 'pseudo',
+ lambda = 10^seq(-2, -1, 0.2), verbose = 0)
R> ps

Optimal lambda = 0.02511886
Max. score: 0.8530795

lambda AUC ci1 ci2
1 0.01000000 0.8493230 0.8317931 0.8668530
2 0.01584893 0.8519034 0.8345098 0.8692970
3 0.02511886 0.8530795 0.8357665 0.8703926
4 0.03981072 0.8527357 0.8354177 0.8700538
5 0.06309573 0.8517654 0.8344032 0.8691276
6 0.10000000 0.8501564 0.8327169 0.8675960

R> mf <- crossVal(y ~ .^2, data = data, method = 'mf',
+ eps = seq(0.1, 0.4, 0.1), verbose = 0)
R> mf

Optimal epsilon = 0.2
Max. score: 0.8530829

epsilon AUC ci1 ci2
1 0.1 0.8523296 0.8350451 0.8696140
2 0.2 0.8530829 0.8357946 0.8703712
3 0.3 0.8518778 0.8344548 0.8693008
4 0.4 0.8498872 0.8322967 0.8674777

In both cases, there is an optimal, intermediate range of regularization with maximum AUC
(Fig. 8). The level of performance attainable with non-interacting models, such as position
frequency matrix (Wasserman and Sandelin 2004), corresponds to the ϵ = 0 limit in Fig. 8b.
The AUC range obtained above is representative of the sensitivity and specificity levels one
would get when scanning a genomic segment using a trained model for detection of a binding
site to within resolution of ∼ 3 base pairs.

4. Summary
We introduced a user-friendly R package bbl, implementing general Boltzmann Bayes clas-
sifiers applicable to heterogeneous, multifactorial predictor data associated with a discrete
multi-class response variable. The currently available R package BoltzMM is limited to fit-
ting data into a single fully visible Boltzmann distribution without reference to response
variables, and assumes binary predictors. The package bbl employs a more general statistical
distribution accommodating heterogeneous, factor-valued predictors via Eq. (6), embedding
it in a Bayesian classifier to build supervised learning and prediction models. The basic
implementation architecture of bbl follows those of standard base R packages such as glm.

30 bbl: Boltzmann Bayes Learner in R

Compared to more widely applied restricted Boltzmann machine algorithms (Hinton 2012),
the Boltzmann Bayes model explicitly infers interaction parameters for all pairs of predictors,
making it possible to interpret trained models directly, as illustrated in Figs. 2 and 7, the
latter using MCMC sampling of predictor distributions. The bbl inference is especially suited
to data types where a moderate number of unordered features (such as nucleotide sequences)
combine to determine class identity, as in transcription factor binding motifs (Section 3.6).
Among the two options for inference methods, mean field (method = ‘mf’) is faster but can
become memory intensive for models with a large number of predictors. Pseudo-likelihood
maximization (method = "pseudo") is slower but usually provides better performance mea-
sured in cross-validation accuracy or AUC.

Computational details
The current version of bbl is available at the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=bbl. Installation of bbl requires the GNU Scien-
tific library https://www.gnu.org/software/gsl installed. The results in this paper were
obtained using R 4.4.1. R itself and all packages used are available from the CRAN at
https://CRAN.R-project.org and Bioconductor at https://bioconductor.org.

References

Ackley DH, Hinton GE, Sejnowski TJ (1985). “A Learning Algorithm for Boltzmann Ma-
chines.” Cognitive Science, 9(1), 147–169. doi:10.1016/s0364-0213(85)80012-4.

Besag J (1975). “Statistical Analysis of Non-Lattice Data.” Journal of the Royal Statistical
Society D, 24(3), 179–195. doi:10.2307/2987782.

Chandler D (1987). Introduction to Modern Statistical Mechanics. Oxford, New York.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.
18637/jss.v033.i01.

Friedman J, Hastie T, Tibshirani R, Narasimhan B, Simon N, Qian J (2019). glmnet: Lasso
and Elastic-Net Regularized Generalized Linear Models. R package version 3.0-2, URL
https://CRAN.R-project.org/package=glmnet.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd edition. Springer-Verlag, New York. doi:10.1007/
978-0-387-84858-7. URL https://web.stanford.edu/~hastie/ElemStatLearn/.

Hendricks P (2015). titanic: Titanic Passenger Survival Data Set. R package version 0.1.0,
URL https://CRAN.R-project.org/package=titanic.

Hinton GE (2012). “A Practical Guide to Training Restricted Boltzmann Machines.”
In G Montavon, GB Orr, KR Müller (eds.), Neural Networks: Tricks of the Trade:
Second Edition, pp. 599–619. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/
978-3-642-35289-8_32.

https://CRAN.R-project.org/package=bbl
https://www.gnu.org/software/gsl
https://CRAN.R-project.org
https://bioconductor.org
https://doi.org/10.1016/s0364-0213(85)80012-4
https://doi.org/10.2307/2987782
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=glmnet
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://web.stanford.edu/~hastie/ElemStatLearn/
https://CRAN.R-project.org/package=titanic
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32

Jun Woo, Jinhua Wang 31

Hyvärinen A (2006). “Consistency of Pseudolikelihood Estimation of Fully Visible Boltzmann
Machines.” Neural Computation, 18(10), 2283–2292. doi:10.1162/neco.2006.18.10.
2283.

Jones A, Bagnall J, Nguyen H (2019a). “BoltzMM: An R Package for Maximum Pseudolikeli-
hood Estimation of Fully-Visible Boltzmann Machines.” Journal of Open Source Software,
4(34), 1193. doi:10.21105/joss.01193.

Jones AT, Nguyen HD, Bagnall JJ (2019b). BoltzMM: Boltzmann Machines with MM Algo-
rithms. R package version 0.1.4, URL https://CRAN.R-project.org/package=BoltzMM.

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy
A, Chéneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K,
Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). “JASPAR 2018:
Update of the Open-Access Database of Transcription Factor Binding Profiles and Its Web
Framework.” Nucleic Acid Research, 46(D1), D260–D266. doi:10.1093/nar/gkx1188.

Lecun Y, Bottou L, Bengio Y, Haffner P (1998). “Gradient-Based Learning Applied to
Document Recognition.” Proceedings of the IEEE, 86(11), 2278–2324. doi:10.1109/5.
726791.

Montavon G, Samek W, Müller KR (2018). “Methods for Interpreting and Understanding
Deep Neural Networks.” Digital Signal Processing, 73, 1–15. doi:10.1016/j.dsp.2017.
10.011.

Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN,
Hwa T, Weigt M (2011). “Direct-Coupling Analysis of Residue Coevolution Captures Native
Contacts across Many Protein Families.” Proceedings of the National Academy of Sciences
of the United States of America, 108(49), E1293–E1301. doi:10.1073/pnas.1111471108.

Nguyen HC, Zecchina R, Berg J (2017). “Inverse Statistical Problems: From the Inverse Ising
Problem to Data Science.” Advances in Physics, 66(3), 197–261. doi:10.1080/00018732.
2017.1341604.

Nguyen HD, Wood IA (2016a). “Asymptotic Normality of the Maximum Pseudolikelihood
Estimator for Fully Visible Boltzmann Machines.” IEEE Transactions on Neural Networks
and Learning Systems, 27(4), 897–902. doi:10.1109/tnnls.2015.2425898.

Nguyen HD, Wood IA (2016b). “A Block Successive Lower-Bound Maximization Algorithm
for the Maximum Pseudo-Likelihood Estimation of Fully Visible Boltzmann Machines.”
Neural Computation, 28(3), 485–492. doi:10.1162/neco_a_00813.

Pagès H, Aboyoun P, Gentleman R, DebRoy S (2019). Biostrings: Efficient Manipulation of
Biological Strings. R package version 2.52.0, URL https://bioconductor.org/packages/
Biostrings.

Philipp M, Rusch T, Hornik K, Strobl C (2018a). “Measuring the Stability of Results From
Supervised Statistical Learning.” Journal of Computational and Graphical Statistics, 27(4),
685–700. doi:10.1080/10618600.2018.1473779.

https://doi.org/10.1162/neco.2006.18.10.2283
https://doi.org/10.1162/neco.2006.18.10.2283
https://doi.org/10.21105/joss.01193
https://CRAN.R-project.org/package=BoltzMM
https://doi.org/10.1093/nar/gkx1188
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1080/00018732.2017.1341604
https://doi.org/10.1080/00018732.2017.1341604
https://doi.org/10.1109/tnnls.2015.2425898
https://doi.org/10.1162/neco_a_00813
https://bioconductor.org/packages/Biostrings
https://bioconductor.org/packages/Biostrings
https://doi.org/10.1080/10618600.2018.1473779

32 bbl: Boltzmann Bayes Learner in R

Philipp M, Strobl C, Zeileis A, Rusch T, Hornik K (2018b). stablelearner: Stability As-
sessment of Statistical Learning Methods. R package version 0.1-1, URL https://CRAN.
R-project.org/package=stablelearner.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011). “pROC:
An Open-Source Package for R and S-PLUS to Analyze and Compare ROC Curves.” BMC
Bioinformatics, 12(1), 77. doi:10.1186/1471-2105-12-77.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M, Siegert S, Doering
M (2019). pROC: Display and Analyze ROC Curves. R package version 1.15.3, URL
https://CRAN.R-project.org/package=pROC.

Salakhutdinov R, Hinton G (2009). “Deep Boltzmann Machines.” In D van Dyk, M Welling
(eds.), Proceedings of the Twelth International Conference on Artificial Intelligence and
Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 448–455. PMLR,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA.

Wasserman WW, Sandelin A (2004). “Applied Bioinformatics for the Identification of Regu-
latory Elements.” Nature Reviews Genetics, 5(4), 276–287. doi:10.1038/nrg1315.

Woo HJ, Yu C, Kumar K, Gold B, Reifman J (2016). “Genotype Distribution-Based
Inference of Collective Effects in Genome-Wide Association Studies: Insights to Age-
Related Macular Degeneration Disease Mechanism.” BMC Genomics, 17(1), 695. doi:
10.1186/s12864-016-2871-3.

https://CRAN.R-project.org/package=stablelearner
https://CRAN.R-project.org/package=stablelearner
https://doi.org/10.1186/1471-2105-12-77
https://CRAN.R-project.org/package=pROC
https://doi.org/10.1038/nrg1315
https://doi.org/10.1186/s12864-016-2871-3
https://doi.org/10.1186/s12864-016-2871-3

Jun Woo, Jinhua Wang 33

Affiliation:
Jun Woo1 (corresponding author), Jinhua Wang
Institute for Health Informatics
and
Masonic Cancer Center
University of Minnesota
Minneapolis, Minnesota, USA
E-mail: wooh@mskcc.org

1Current address: Memorial Sloan Kettering Cancer Center, New York, New York, USA

mailto:wooh@mskcc.org

	Introduction
	Model and algorithm
	Model description
	Pseudo-likelihood inference
	Mean field inference
	Naive Bayes
	Classification

	Software Usage and Tests
	Logistic regression
	Boltzmann Bayes learning
	Simulated data
	Genetic code
	Image data
	Transcription factor binding site data

	Summary

